Как увеличить яркость лампы дневного света
Lumileds › Блог › На заметку: десять фактов об автомобильном свете
Лампы повышенной яркости и повышенной мощности — это не одно и то же
Большая мощность еще не говорит о том, что будет больше света. Лампы с увеличенной яркостью — это, по сути, лампы с той же потребляемой мощностью 55–60 Вт и той же конструкцией, но лучшей светоотдачей. Типы ламп H1, H3, H4 и H7 имеют одинаковую мощность 55 Вт, но, несмотря на это, имеют разный уровень светового потока. Например, 1000 лм (H4, ближний свет) и 1550 лм (H1). Но световой поток не самый важный параметр для лампы. Самое важное — это яркость. К примеру, лампы H1 производят на 50 лм больше света, чем H7, но лампы H7 обладают лучшими характеристиками за счет модернизированной конструкции, что дает в итоге большую яркость.
Обратите внимание на модели H7 ламп головного освещения Philips X-tremeVision, которые отличаются увеличенной на 130 % яркостью света и долгим сроком службы. С ними водитель может лучше видеть дорогу и быстрее реагировать в непредвиденных ситуациях.
Если же говорить именно о повышенной мощности, то нужно иметь в виду, что повышенная мощность требует значительного роста тока. Более того, для установки таких ламп может потребоваться модернизация фар, ведь они изначально рассчитаны на определенный тепловой режим.
Нужно следить за напряжением в сети
Даже передовые технологии и качественные лампы не помогут при нестабильном или недостаточном напряжении. Прежде всего это касается галогена и ламп накаливания. Ксеноновые и светодиодные лампы имеют собственное внутреннее стабилизированное напряжение. Но даже в их работе может произойти сбой, если бортовая сеть не обеспечивает достаточное напряжение.
Дневные ходовые огни значительно снижают риск возникновения ДТП
Статистика аварий в скандинавских странах (а именно там впервые появились дневные ходовые огни), а также ряд специальных исследований подтверждают положительный эффект от использования систем дневного освещения в автомобилях.
Новое поколение высокомощных светодиодных дневных ходовых огней Philips DayLightGuide гарантирует улучшенную видимость на дороге как днем, так и ночью. Технология Lightguide представляет собой уникальное решение. В отличие от других источников, эти дневные ходовые огни обеспечивают равномерное распределение света и широкий угол освещения. Благодаря тому, что водителям других машин и пешеходам становится проще увидеть автомобиль, повышается общий уровень безопасности на дороге. В темное время суток яркость ходовых огней автоматически приглушается.
Лампы лампам рознь
При замене освещения важно выбрать качественные лампы, подходящие вашему автомобилю. На фарах всегда указано, какую лампу в них нужно устанавливать. Ни в коем случае ничего нештатного.
Цвет: белый, желтый, синий
Какой цвет света фар лучше? С точки зрения качества света, наилучший диапазон цветовой температуры — от 3000 до 5000 К, от насыщенного желтого до ярко-белого с голубизной. При этом для ПТФ наилучшим вариантом является ядовито-желтый цвет.
Галоген остается
Распространялись мифы о том, что галоген очень быстро перестанет пользоваться популярностью, и его скоро вытеснят новые технологии (например, ксенон и LED). Но это не так. Эту технологию продолжают использовать большинство производителей. А у покупателей такие лампы являются самыми востребованными. В чем их секрет? В соотношении цена/качество, доступности, простоте установки и универсальности.
Например, галогенные лампы головного освещения Philips WhiteVision превосходят по характеристикам любые автомобильные лампы с белым светом с голубым оттенком. Это лучший выбор для тех, кто стремится и к безопасности, и к современному стилю. WhiteVision сертифицированы по стандартам ECE. Это первые лампы с ярким белым светом, разрешенные к использованию на дорогах общего пользования. WhiteVision до 3700 К мгновенно рассеивают темноту ярким лучом чистого белого света и при этом не ослепляют водителей впереди идущих и встречных автомобилей.
В ассортименте Philips целых десять серий галогенных ламп, которые вы можете подобрать для своего автомобиля в зависимости от своих предпочтений, — больше света, долговечность и стиль.
Фары нужно регулировать
Только отрегулированные фары обладают оптимальной дальностью действия и светят в нужную сторону. Процедуру регулировки следует выполнять каждый раз после снятия и установки фар головного света.
А еще фары нужно мыть
Противотуманки — для тумана
Многие любят включать противотуманные фары всегда, а не только во время тумана. ПТФ действительно ярко и очень широко освещают участок дороги прямо перед автомобилем. Это создает ощущение гораздо лучшей видимости дороги. Однако есть и оборотная сторона медали: глаза водителя привыкают к излишне яркому пятну света перед капотом, а эта привычка, в свою очередь, лишает его возможности как следует видеть дальше вперед, где уровень освещения заметно ниже. Иными словами, водитель ослепляет себя своими же противотуманками. Особенно этот эффект проявляется зимой, когда обочины, присыпанные свежим снегом, кажутся нестерпимо белыми.
Плавная регулировка яркости свечения люминесцентных ламп дневного света. Регулятор, драйвер управления. Схема
Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Драйвер может работать, как от сети, так и от низковольтного источника (10+)
Плавная регулировка яркости люминесцентных ламп и светодиодов
Бытует мнение, что плавное управление яркостью свечения ламп дневного света невозможно. Сформировалось это мнение, вероятно, благодаря надписи на упаковке люминесцентных и подобных им ламп, что их нельзя подключать к регуляторам яркости свечения. Эта надпись – будет абсолютной правдой, если к ней дописать ‘предназначенных для ламп накаливания’. Действительно, свойства газоразрядных ламп настолько отличаются от свойств ламп накаливания, что регуляторы, предназначенные для одних, не годятся для других.
Как регулировать яркость свечения ламп дневного света и светодиодов
Но изготовить регулятор, способный плавно изменять яркость свечения ламп дневного света, можно. Однако, применять его следует только с лампами, которые не оснащены встроенными драйверами. Подойдут длинные цилиндрические лампы дневного света. Энергосберегающие лампы, предназначенные в патрон лампы накаливания, работать с регулятором не будет, так как в них уже встроен драйвер, который будет мешать.
Вашему вниманию подборки материалов:
Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
На основе такого же принципа можно построить регулятор яркости светодиодов. Обсудим это в конце статьи.
Почему к люминесцентным лампам и светодиодам не подходят регуляторы от лампочек с нитью накала? Нить накала проявляет себя как резистор с несколько изменяющимся сопротивлением в зависимости от температуры. Так что яркость ее свечения можно изменять, изменяя приложенное к ней напряжение. Нить накала обладает довольно большой инертностью. На нее можно подавать пульсирующее напряжение сложной формы, например, от тиристорного регулятора. При этом она не будет моргать и негативно влиять на органы зрения.
Энергосберегающие лампы ведут себя по-другому. Чтобы такая лампа загорелась, на нее надо подать напряжение в несколько раз выше рабочего. Происходит зажигание. Дальше напряжение нужно понизить до номинального. Отклонение напряжения питания от номинального в меньшую сторону приводит к ее быстрому погасанию, а в большую – к нагреву и перегоранию. Питать ее пульсирующим напряжением вообще не следует (хотя это постоянно делается в бытовых светильниках), так как она довольно сильно моргает, что неполезно для зрения.
Галогенная, неоновая или другая газоразрядная лампа в своем рабочем режиме имеет очень небольшое динамическое сопротивление. Это значит, что очень небольшое изменение питающего напряжения приводит к большому изменению силы тока и яркости свечения. Таким образом, изменяя питающее напряжение, регулировать яркость нельзя. Такую лампу (да и светодиод) нужно питать от источника тока (подробнее об источниках стабильного тока), обладающего большим динамическим сопротивлением, управлять ее яркостью, изменяя силу тока. Напряжение на лампе (светодиоде) при этом будет меняться незначительно. У такого подхода есть еще два плюса. Во-первых, нет необходимости в отдельной схеме балласта, зажигающего лампу. Если применить действительно хороший импульсный источник тока, то напряжение на лампе будет возрастать до тех пор, пока лампа не загорится, а далее упадет до рабочего. Во-вторых, лампа будет светиться с яркостью, независящей от температуры и других условий среды.
Регулятор, драйвер с регулированием яркости. Схема
Теперь перейдем к схеме устройства, предназначенного для питания и регулировки яркости свечения. Это устройство может питать, как люминесцентные лампы, так и светодиоды или блоки светодиодов, соединенных последовательно. Оно может быть запитано от самых разных источников питания с самым разным напряжением (от 12 В до 400 В). Например, на основе приведенной схемы можно изготовить электрическую ‘керосиновую’ лампу для автономного освещения при перебоях электропитания или светильник для салона автомобиля. Мы приведем форму для онлайн расчета параметров схемы для разных напряжений питания и разных нагрузок (ламп, блоков светодиодов). Так что Вы легко сможете сами рассчитать свой регулятор яркости.
Устройство представляет собой классический полумостовой импульсный преобразователь напряжения. Оно построено аналогично импульсному блоку питания. Для удобства мы постарались сохранить обозначения элементов из схемы импульсного блока питания, так что нумерация получилась не непрерывной.
Питание управляющей схемы осуществляется следующим образом. Через резистор R14 и диод VD14 небольшим током заряжается конденсатор C4. Как только напряжение на нем становится больше 10 В, контроллер начинает формировать импульсы, которые открывают силовые транзисторы. Формируется напряжение на обмотке L7. Это напряжение через резистор R15 питает контроллер.
Применять регулятор можно как для ручной регулировки, так и для варьирования яркости в зависимости от управляющего тока. Управляющий ток подается на вход C. Этот ток прибавляется к измеряемому, а цепь обратной связи поддерживает суммарный ток (измеряемый + управляющий) на фиксированном уровне. Так что, чем больше управляющий ток, тем меньше ток через осветительный прибор. Мы разработали на основе этого драйвера цветомузыкальную установку.
Радиодетали
Для расчета номиналов элементов нам понадобится задать:
- Напряжение зажигания. Для газоразрядных ламп это может быть напряжение от 600 до 1000 вольт. Для светодиодов напряжение зажигания равно рабочему напряжению.
- Рабочее напряжение. Для газоразрядных ламп это может быть напряжение 200 – 300 вольт. Для светодиодов от 1 до нескольких вольт.
- Максимальный рабочий ток светильника. Для 22 Вт лампы дневного света это 0.1 А. У ярких светодиодов этот ток может быть 1 А.
- Напряжение питания. Если устройство питается от выпрямителя, то нужно использовать амплитудное значение напряжения (для осветительной сети это 310 вольт.) При питании от источника постоянного тока используйте просто напряжение этого источника.
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Как не перепутать плюс и минус? Защита от переполюсовки. Схема.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.
Тиристорные включающие, выключающие, переключающие, коммутирующие, ком.
Управление тиристорным силовым ключом с помощью оптрона. Гальваническая развязка.
Простой импульсный прямоходовый преобразователь напряжения. 5 – 12 вол.
Схема простого преобразователя напряжения для питания операционного усилителя.
Защита от перегрева транзисторов – силовых ключей в импульсном источни.
Температурная, тепловая защита силовых элементов (диодов, транзисторов). Термоза.
Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория
Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.
Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.
Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.
С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.
Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».
В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.
Теория
Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.
Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.
Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.
Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.
Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.
Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.
Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.
Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.
Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.
Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы
Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.
Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:
R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.
Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.
Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.
Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.
Расчёт выходного тока достаточно прост:
Получается достаточно компактное решение:
Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:
Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.
Способы регулирования яркости: ШИМ-регулировка
ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.
При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).
Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.
Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:
А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.
Как регулировать яркость светодиодных ламп на 220В
Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.
Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.
Почему нельзя диммировать светодиодные лампы 220В
Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.
Различают такие диммеры по фронту работы:
1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:
2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.
Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.
Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.
Регулировка яркости светодиодных ламп – рациональное решение 12В
Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.
Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.
Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».
Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.
Вот пример использования такого решения:
Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.
Заключение
Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.
Способы управления яркостью свечения светодиодов с помощью импульсных драйверов
Rich Rosen, National Semiconductor
Введение
Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов. Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом. Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов. Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.
Яркость и цветовая температура светодиодов
Яркость светодиодов
Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко. Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд). Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.
На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (IF) график исключительно линеен. Нелинейность начинает проявляться при увеличении IF. При выходе тока за пределы линейного участка эффективность светодиода уменьшается.
![]() ![]() |
|
Рисунок 1. | Зависимость светового потока от тока через светодиод. |
При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.
Цветовая температура светодиодов
Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора. Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными». Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.
Способы управления яркостью свечения светодиодов
Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.
На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение VIN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе RSNS. Ток дросселя целиком протекает через светодиод и резистор RSNS, и регулируется напряжением, подаваемым с резистора на вывод CS. Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и RSNS увеличивается, вследствие чего увеличивается средний ток светодиода.
![]() ![]() |
|
Рисунок 2. | Топология понижающего преобразователя. |
Аналоговое диммирование
Аналоговое диммирование – это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне. Аналоговое диммирование выполняется либо регулировкой резистора датчика тока RSNS, либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов. Оба примера аналогового управления показаны на Рисунке 2.
Аналоговое диммирование регулировкой RSNS
Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины RSNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.
Аналоговое диммирование с помощью управления напряжением питания через вывод CS
Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS. Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2). Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.
Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.
Диммирование с помощью ШИМ
Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.
Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:
IDIM-LED – средний ток через светодиод,
DDIM – коэффициент заполнения импульсов ШИМ,
ILED – номинальный ток светодиода, устанавливаемый выбором величины сопротивления RSNS (см. Рисунок 3).
![]() ![]() |
|
Рисунок 3. | Двухпроводное ШИМ диммирование. |
Модуляция драйвера светодиодов
Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд. Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы. С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.
Двухпроводное ШИМ-диммирование
Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.
Быстрое ШИМ-диммирование с шунтирующим устройством
Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения. Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).
![]() ![]() |
|
а) | |
![]() ![]() |
|
б) | |
Рисунок 4. | Быстрое ШИМ диммирование (а), формы токов и напряжений (б). |
Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора. На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406, а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу). В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа Si3458.
При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора. В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов. Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.
Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала RDS-ON.
Многорежимный диммер LM3409
National Semiconductor выпускает уникальный многорежимный драйвер светодиодов LM3409, предназначенный как для аналогового, так и ШИМ регулирования яркости. Диммирование может осуществляться одним из четырех способов:
- Аналоговое регулирование прямой подачей напряжения 0 … 1.24 В на вывод IADJ.
- Аналоговое регулирование с помощью потенциометра, подключенного между выводом IADJ и «землей».
- ШИМ регулирование с помощью вывода EN.
- ШИМ регулирование с помощью шунтирующего MOSFET транзистора.
На Рисунке 5 показана схема включения LM3409 для управления яркостью с помощью потенциометра. Внутренний источник тока 5 мкА создает падение напряжения на сопротивлении RADJ, которое, в свою очередь, влияет на внутренний порог схемы измерения тока светодиода. С точно таким же эффектом можно управлять микросхемой, непосредственно подавая постоянное напряжение на вывод IADJ.
![]() ![]() |
|
Рисунок 5. | Аналоговое управление яркостью. |
Рисунок 6 демонстрирует зависимость измеренного тока светодиода от сопротивления включенного между IADJ и «землей» потенциометра. Плато на уровне 1 А в верхней части графика определяется величиной показанного на Рисунке 4 резистора RSNS, задающего максимальный номинальный ток светодиода.
![]() ![]() |
|
Рисунок 6. | Зависимость тока светодиода от сопротивления потенциометра. |
На Рисунке 7 изображена зависимость измеренного тока светодиода от постоянного напряжения, приложенного к выводу IADJ. Заметим, что максимальный ток здесь также определяется величиной RSNS.
![]() ![]() |
|
Рисунок 7. | Зависимость тока светодиода от напряжения на выводе IADJ. |
Обе аналоговые технологии диммирования просты в реализации и позволяют с очень высокой линейностью регулировать яркость свечения, вплоть до уровня 10% от максимума.
Заключение
Регулировать яркость свечения светодиодов, питающихся от импульсных преобразователей, можно различными способами. Для каждого из двух основных методов, ШИМ и аналогового, характерны свои достоинства и недостатки. Ценою использования дополнительной логики, ШИМ регулирование значительно уменьшает вариации цвета светодиода при изменении яркости. Схемотехника аналогового диммирования проще, но неприменима там, где требуется поддержания постоянной цветовой температуры.
Перевод: AlexAAN по заказу РадиоЛоцман
Замена люминесцентных ламп на светодиодные
В жилых, офисных, коммерческих помещений для освещения применяются источники дневного света. Их отличают определенные сильные и слабые стороны. Главный минус – недостаточная экономичность, ведь есть намного более эффективные, создаваемые с применением передовых технологий, решения.
Преимущества светодиодов
Перед уточнением, как поменять люминесцентную лампу, нужно понять, нужно ли вам это. Замена люминесцентных ламп на светодиодные, несмотря на первоначальные расходы, является экономически целесообразной. Смотрите сами:
- Переделка или перенастройка (лампы светодиодные вместо люминесцентных можно ставить в старые приборы) выполняется быстро и без лишних трат.
- LED ревизировать, обслуживать не требуется – достаточно будет временами протирать пыль, заменять трубки.
- Электричества вы сэкономите до 60%, если сравнивать с теми же ЛН-моделями.
- Средний срок жизни светодиодных лампы дневного света составляет 40 тысяч часов – это намного больше, чем у люминесцентных приборов.
- Трубки со светодиодами не мерцают, являются идеальным выбором для садиков и школ, клиник, офисов.
- Ртуть, прочие отравляющие вещества в светодиодах отсутствуют, а значит, не придется особым образом утилизировать их.
- Даже при резком падении напряжений внутри сети светодиодные лампы дневного света продолжают работать без сбоев.
То есть замена люминесцентных ламп на светодиодные дает массу преимуществ, хотя для начала придется потратиться на их покупку. Есть бюджетные и премиальные варианты, так что вы найдете источник 18 Вт в своем ценовом диапазоне.
Светодиодные лампы вместо люминесцентных: а стоит ли менять
Замена светильников Армстронг на светодиодные в большинстве случаев оправдана, поскольку LED-источники почти по набору параметров устаревшие аналоги превосходят. Для себя просчитайте первоначальные траты, сопоставьте параметры разных лампочек, пересчитайте экономию в долгосрочной перспективе в случае замены светодиодными лампами люминесцентных ламп 18 Вт.
Лампы дневного света Т8:
- вырабатывают до 10000 часов, обычно меньше;
- свет распространяют по разным направлениям, требуют наличия специальных отражателей;
- увеличивают яркость при включении по нарастающей;
- автомат защиты часто дает сбои в работе;
- люминесцентный поверхностный слой постепенно теряет свои качества, поток света уменьшается на треть довольно быстро;
- ртуть, колбу нужно грамотно утилизировать.
Лампы светодиодные Т8:
- служат до 50 тыс. часов (учитывайте число включений-выключений);
- дают направленный свет;
- сразу включаются ярко с полной отдачей светового потока;
- нет необходимости ставить драйвера или дроссели и стартеры;
- яркость теряется не больше 10% за каждый десяток тысяч часов;
- потребление энергии от сети минимальное;
- экологическая безопасность – 100%.
Светоотдача светодиодных ламп Т8 (при равном с люминесцентными потреблением энергии) имеют в разы больше, выходят из строя раньше положенного срока очень редко. При покупке вы получаете гарантию от завода-производителя либо поставщика. Возможность размещать внутри главной колбы разное число светодиодных элементов позволяет получать любую интенсивность света и любую цветовую температуру. Взвесив сильные и слабые стороны решения, можно сказать, что лампы светодиодные вместо люминесцентных в перспективе будут выгоднее. Недостаток один – светодиоды стоят дороже.
Как подключать
Лампы люминесцентные имеют две схемы подключения:
- с ПРА (пуско регулирующая автоматика) включающим в себя дроссель, стартер, конденсатор (1);
- на базе ЭПРА электронного типа, балласт включает в себя преобразователь, работающий на высоких частотах (2).
В растровых светильниках размещены следующие элементы:
- 4 люминесцентных трубок подключают к 2 ЭПРА. Каждая ЭПРА отвечают за функционирование пары ламп;
- либо к ПРА комбинированного типа (в набор входят 4 стартера, пара дросселей, конденсаторы).
Схема подключения светодиодной лампы Т8 не предполагает использование ПРА или ЭПРА.
На иллюстрациях наглядно видно, как изменить схему подключения люминесцентной лампы на светодиодную.
Стабилизированный автомат защиты встраивается внутрь корпуса. С ним под рассеивателем из пластиковых либо стекломасс идет печатная плата со светодиодными элементами, которая крепится на алюминиевый радиаторе. Напряжение от сети поступает через цокольные штырьки на драйвер с одной либо двух сторон. Если сторона подачи одна, штырьки будут выполнять функцию крепежного элемента.
Перед тем, как устанавливать лампы светодиодные вместо люминесцентных и дорабатывать, перенастраивать старый светильник, внимательно ознакомьтесь со схемой подключения. Ее можно найти на корпусе лампы LED либо в документации к ней. Светодиод с подведением фаз и ноля с различных сторон – самый часто используемый вариант, поэтому, как поменять люминесцентную лампу рассматривать будем именно на ее примере.
Порядок переделки
Порядок подключения зависит от того, что нужно переделывать. Самостоятельно выполнить работы можно, если действовать по плану – подробная схема подключения светодиодной лампы вместо люминесцентных поможет во всем разобраться даже неопытному электрику.
- Отключите автоматическую защиту, уберите сетевое напряжение, убедитесь, что его нет.
- Снимите защитную крышку, чтобы получить доступ к рабочим элементам схемы. Уберите из цепи конденсатор, стартер, дроссель.
- Отделить следующие к патронным клеммам провода, присоедините их к фазному, нулевому проводам напрямую, остальные изолируйте либо удалите.
- Вставьте лампочку Т8 G13, выполните пробное включение.
Процедура сложностей не представляет. Контакты штырьками на цоколях помечаются буквами «L» и «N». Перенастройка светильников с электронным балластом еще более простая. Как переделать люминесцентный светильник в этом случае:
- Сделайте выпайку либо разделите кусачками провода, входящие в балластную часть, а затем выходящие из нее.
- Провода нуля и фазы соедините с проводками обоих патронов.
- Стыки, соединения заизолируйте, вставьте ЛЭД, включите сеть. Если все было сделано правильно, появится свет.
Завершающие действия – изоляция мест соединения, вставка нового источника, подача напряжения. Подключение светодиодных ламп в среднем занимает не более 10 минут.
Алгоритм выполнения работ.
Замена люминесцентной лампы на светодиодную Т8 должна проводиться с учетом модели. Например, в Philips задача предельно упрощена за счет особой конструкции и заводской комплектации. Как переделать люминесцентный светильник в светодиодный – раскручивайте стартер, вкручивайте заглушку (нужна для замены, идет в базовой комплектации). Снимать, разбирать корпус с дросселями не требуется.
При выборе источника света на замену старого всегда смотрите на тип цоколя. Он может иметь жесткую фиксацию с корпусной частью либо быть подвижным поворотным. Модели с поворотным цоколем считаются универсальными. Как подключить светодиодные лампы модели – достаточно вкрутить в переделанный светильник с горизонтальными либо вертикальными прорезями патрона.
При правильном выборе, подключении светодиодной лампы вместо люминесцентных срок ее службы будет значительным. На проблемы обычно жалуются покупатели, купившие китайскую подделку. Поэтому делайте покупки в проверенных местах и не выбирайте аналоги, поскольку экономия в данном случае не оправдана.
Что такое и какие бывают люминесцентные лампы дневного света
Что такое люминесцентные лампы
Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.
Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.
Принцип работы и устойство ламп
Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.
Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.
При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.
Для создание ультрафиолетового излучения применяется газоразрядные лампы. Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.
Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.
Как подключить люминесцентную лампу
В традиционной схеме всего три элемента:
Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.
Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.
Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.
Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.
Люминесцентные лампы (ЛЛ)
Мощность лампы, Вт
Параллельно включенный конденсатор 250 В, мкФ
Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.
Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.
Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.
Собрать готовый светильник с ним очень просто.
На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.
Достоинства электронного пуско-регулирующего аппарата:
- Простота подключения.
- Повышает срок эксплуатации лампы.
- Снижает время включения лампы.
- Отсутствует мерцание при запуске.
- Долговечность.
Подробнее о ЭПРА вы можите прочитать – тут
Осветители на лампах высокого давления имеют такую схему.
Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.
Как проверить люминесцентную лампу
Неисправности могут визуально проявляться таким образом.
- Лампа не зажигается совсем.
- Наблюдается мерцание при работе.
- Мерцание перед выходом на рабочий режим.
- Гудение.
- Мерцание при горении.
Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.
Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.
Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.
Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это – щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.
Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.
Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.
Целостность электродов можно проверить еще и мультиметром. Возможно использовать режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.
При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.
Типы цоколей ламп дневного света
Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.
Условно их можно подразделить на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными характеристиками являются диаметр и расстояние между витками.
Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.
Маркировка и технические характеристики
Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.
У нас наиболее востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно марк ировка осуществляется в формате Ехх. Буква «Е» – общепринятая, от фамилии изобрет ателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.
Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.
Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.
Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.
Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.
На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.
Существует российская и международная маркировка осветительных приборов.